If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-84=0
a = 4; b = 8; c = -84;
Δ = b2-4ac
Δ = 82-4·4·(-84)
Δ = 1408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1408}=\sqrt{64*22}=\sqrt{64}*\sqrt{22}=8\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{22}}{2*4}=\frac{-8-8\sqrt{22}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{22}}{2*4}=\frac{-8+8\sqrt{22}}{8} $
| -3b-19-10b=13-11b | | -9g-12=-15g | | 9x+14=121 | | 3m=0.2 | | 25=p5/4 | | 11j+14=8j-7 | | 11n-5n+-3n=-18 | | 4c-4c+c=15 | | 11k-9k+5=15 | | 14p-4p-7p-2p=14 | | 28=t/4–-3 | | 25x=85 | | s-11s-5=5 | | 7.1z=7.81 | | 30(g+4)=600 | | 35x=95 | | -2h+-12h+-6h=-20 | | 9m=-12m | | 39(g+4)=600 | | -11y+12y+-3y+3=-9 | | 17.31+11.3u=10.4u+0.39 | | 6=h-89 | | 2(3a+5)=2a+45 | | 17-4n=13n-19-15n | | -8t=19-7t | | x=1/4x12 | | -4c-5=-16-3c | | 2=h-89/3 | | 2÷3=(2x+1)÷4 | | q/4+55=63 | | 2p-12=19 | | x^2-8x+19=2x-7 |